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(CLEO Caollaboration
(Received 16 September 2000; published 10 January)2001

Color-suppressed decays®imesons to final states with(2S) mesons have been observed with the CLEO
detector. The branching fractions for the decBys— ¢(2S)K ™, BT — y(2S)K* (892)", B’ — ¢(2S)K°, and
B%— (2S)K*(892)° are measured to be (7®.7+0.9)x10 4, (9.2+1.9+1.2)x10 4, (5.0+1.1+0.6)
X 1074, and (7.6-1.1+1.0)x 104, respectively, where the first uncertainty is statistical and the second is
systematic. The first measurement of the longitudinal polarization fraction is extracted from the angular analy-
sis of theB— y(2S)K*(892) candidatesI', /I'=0.45+0.11+0.04. Our measurements of the decd@fs
—(2S)K® andB* — y(2S)K* (892)" are first observations.

DOI: 10.1103/PhysRevD.63.031103 PACS nuni§erl3.25.Hw

Studies of the decays & mesons ta)(2S)-meson final tained upper limits for the branching fractions of the other
states contribute to knowledge of hadroBigneson decays, B— (2S)K®*) modes[2]. The CLEO Collaboration subse-
which involve both the weak and strong interactions. Thequently —measured the branching fraction3(B*
ARGUS Collaboration observed the decBy — #(2S)K*  — y(2S)K)=(6.1+2.3+0.9)x 10”4 and determined more
[1] with a branching fraction (188+4)x10 * and ob-  stringent upper limits for the oth&— (2S)K*) branching

fractions [3]. Recently, the Collider Detector at Fermilab
(CDF) Collaboration measured the branching fractions
*Permanent address: University of Cincinnati, Cincinnati, OHB(B* — #(2S)K ")=(5.6+0.8+-1.0)x 10 * and B(B°

45221, — (2S)K*%)=(9.2+2.0+ 1.6)x 10 * [4].
'Permanent address: Massachusetts Institute of Technology, Cam- Of the decaysB— ¢(2S)K™*) [5] reported here, the
bridge, MA 02139. modes involving a neutraB® meson decaying to £P
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eigenstate can be used, in a manner similar to that for theiy (4S) energy is 9.2 fb?', corresponding to the production
J/4 analogues, to measure diEP-violation angle of the of 9.7x10° BB pairs. A data sample of 4.6 8 recorded

unitarity quark-mixing triangle. Measurements of the mode .
B— (2S)K™*) can also contribute to tests of the factoriza—S60 MeV below theY (4S) energy was used for continuum

tion hypothesig6] and to phenomenological techniques em-nonBB background evaluation. The Monte Carlo simulation
ployed in several models that predict the ratios of vector tf the CLEO detector iSEANT-based 15]. Simulated events
pseudoscalar kaon production and the longitudinal polarizafor the CLEO Il and CLEO I1.V configurations are processed
tion fraction in B—J/¢yK*) and B— y(2S)K*) decays in the same manner as data.

[7—11]. Absolute branching fractions have been calculated Candidates for the decayB*— y(2S)K*)* and B°

by combining these phenomenological approaches with in— ¢(2S)K*)° are reconstructed via the decay(2S)
puts from experimentg8]. Nonfactorizable contributions to —1*1~ and 4(2S)—=J/yn* 7~ —1* "o 7~, wherel "1~

the decay amplitudes can provide substantial corrections tetands fore*e™ or u* u~ pairs. TheK* * andK*° mesons
these predictiongl2]. Both improvements in the accuracy of gre reconstructed in thei27 ", K™ 7, K™ 7, andK2#°

the experimental measurements and the observation of neggdes.

modes can help in differentiating between models and under- gjecron candidates are identified by their calorimeter en-
standing the role of any nonfactorizable correctip@s11. Ergy deposition, which must be consistent with their mea-

I Ifn thiz RapEBComr;gnﬁi{'giop vxlledr_eporr: mfgasurte):ments %Sured momenta and specific ionization in the drift chamber.
? Ol;rth e((:jay ;(‘f( )ZS K’Omch'fg t ezérsé& S(\a/\r/va— Electrons may be accompanied by radiative photons emitted
ion of the decay® — y(2S)K™ an —¥(29) - WE in the narrow cone along the momentum direction of the

also present the first angular analysis of the decBys . : .
S p(29)K** andBO— y(2S)K*©, which leads to a deter- electron. The recovery of these photons |mpr0\_/es_the invari
ant mass resolution and results in a 20% relative increase in

mination of the longitudinal polarization fractiohi; /I". The o . .
measurements reported in this Rapid Communication supeFlJe '/’(ZS)_).l ! !’eCOI’lSFI’UCtIOH efﬁmencMﬁ]. Atleast one
muon candidate is required to penetrate five nuclear interac-

sede the previous CLEO resu[t3]. . X .
The data used in this analysis were collected frhe tion lengths of material, whereas the other candidate must

collisions on or near th&/ (4S) resonance at the Cornell penetrate at least three nuclear interaction lengths. In the
Electron Storage RingCESR with two configurations of decaysy(2S)—J/ym" 7, thew” m invariant mass is re-
the CLEO detector, CLEO Il and CLEO I1.V. quired to be greater than 0.4 Ge¥/ as motivated by the

In CLEO 11 [13], the momenta of charged particles were measureds " 7~ invariant mass spectrufd7]. For J/¢ and
measured in a tracking system consisting of a 6-layer straw/(2S) candidates in the dielectron final state we use an
tube chamber, a 10-layer precision drift chamber, and a 51asymmetric mass criterion to take into account the radiative
layer main drift chamber, all operating inside a 1.5 T soledail: ~ —100<Mg+¢-—M;,<50 MeV/c? and —140
noidal magnet. The main drift chamber also provided a<Meg+e-—M y5<60 MeV/c?. The dimuon candidate
measurement of the specific ionizatiodE/dx) of charged mass is required to be within 50 MeV/c? of the J/y
particles. For CLEO 11.V, the innermost wire chamber was(#(2S)) mass.
replaced with a three-layer silicon vertex detedtbf], and CandidateK2 mesons are reconstructed from pairs of op-
the argon-ethane gas of the main drift chamber was replacqubsitely charged tracks with vertices separated from the pri-
with a helium-propane mixture. A 7800-crystal Csl calorim- mary interaction point with at least 3 standard deviations.
eter detected photon candidates and was used for electr@andidateK* mesons are required to haveKar invariant
identification. Muon candidates were identified with propor-mass within 80 MeW¢? of the K* mass[18]. For the
tional counters placed at various depths in the steel absorbesharged kaon candidates froki* decays, thedE/dx and
The total integrated luminosity of the data sample at theime-of-flight information(at least one source of identifica-

TABLE |. Dimensions of theAE vs M(B) signal area 1, is the PDGB-meson mas$18]), number of events in the signal area,
background estimates, and detection efficiendeanching fractions not included

B —y(29)K*  B—y(2S9)K2 Bt —y(2S)K** B%— y(29)K*0
K*JrHKgWJr K*+—>K+’7T0 K*0—>K+7T_ K*O*}Kgﬂ_o

|AE| [MeV] 20 20 30 40 30 40
[M(B)—M,| [MeV/c?] 8 8 8 9 8 9
N((2S)—1"17) 60 11 5 7 20 1
N(p(2S)— Il pm™ ™) 69 10 9 2 25 2
B— (2S)X bkg. 0.2-0.1 0.02+0.02 0.6-0.2 0.30.2 1.7+0.5 0.2:0.1
Combinatorial bkg. 1.60.5 0.3:0.2 0.5:0.3 0.7:0.3 1.8-0.5 0.1+0.1
Total bkg. 1.8-0.5 0.3:0.2 1.1+0.4 1.0:0.4 3.5:0.7 0.3-0.1
e(Y(29)—1717) [%] 44 33 18 6 23 5
e(Y(2S)— w7 [%) 23 17 8 3 11 3
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tion must be availabjemust be consistent with a kaon hy-
pothesis to within two standard deviations.

Photon candidates are defined as energy clusters in the
calorimeter of at least 60 MeV in the barrel regidopsé)
<0.80, and 100 MeV in the end cap region, 68@osé|
<0.95, whered is the polar angle with respect to the beam
axis. Each photon candidate must have a lateral profile of
energy deposition consistent with that expected of a photon.
In addition, we do not use the fragments of a nearby large
shower as photon candidates. The candidates are recon-
structed from photon pairs with at least one photon from the
barrel region and an invariant mass within 3 standard devia-
tions of the PDG#° mass[18]. The #° mass resolution is
calculated from the known angular and energy resolutions of
the calorimeter.

For the modes with a neutral pion in the final state, the
K* helicity angle must be greater thar/2, which effec-
tively eliminates the low momentum neutral pion back-
ground. TheK* helicity angle,fx«, is the polar angle of the
K meson in theK* rest frame relative to the negative of the
¥(2S) direction in that frame.

The B candidates are selected by means of two param-
eters: the difference between the energy of Bheandidate
and the beam energyAE=E((2S))+E(K*)) — Epeam
and the beam-constrained-candidate mass, M (B)

= VE2,.,— p3, Wherepg is the momentum of th& candi-
date. TheB candidate must be within the:3 standard de-
viation signal region(Table | in the AE vs M(B) plane.

After the B— ¢(2S)K* event selection, 10—20% of the
events have more than oBecandidate in the signal area. In
these cases, we select tBecandidate with minimun, (x;
—,LLi)Z/O'iZ, wherew; is a central value of the measured pa-
rameterx; and o; is its uncertainty B—1*1"K* and B
—| 71~ 7"~ K* were considered different mode3he fol-
lowing parameters were used where available: the masses of
the ¢(29), K*, K2, and #° candidates, and the identifica-
tion significance of the kaon candidates frét decays and
the pion candidates from thg(2S)— J/7" 7~ decay. The
distributions of AE vs M(B) for the six different B
— (2S)K™*) decays after all selection criteria are applied
are shown in Fig. 1.

The principal sources of background are the cross-feed
from a differentB— y(2S)K*) mode orB— ¢(2S)K
modes, the combinatorial background frahj4S) — BB de-
cays that do not contain #(2S) daughter, and continuum
nonBB decays.

Contributions from miscellaneou8 decays withi(2S)
decay products are estimated using the Monte Carlo simula-
tion of BB events in which one of th& mesons decays
exclusively in the selected mode. The following modes are

FIG. 1. AE vs M(B) for (@ B™—y(2S)K™, (b) B
—y(29)KL, (© BT—y(29)K**, K*T—K2x', (d) B°
— (29 K*0, K*O—K' 7™, (e) Bt = y(29)K* ', K* T K ¥ 70,

considered for calculations of background from misidentified
B decays to states with charmoniuBx- ¢(2S)K processes
and (f) B~ ¢(2S)K*°, K*°—K2x° candidate events, with the With branching fractions obtained in this Rapid Communica-
contributions from ¢(2S)—1*1~ and y(2S)—J/yx* =~ com-  tion (before correcting for this background— i(2S)K*

bined. The boxes indicate the signal regions. Also shown are therocesses with similarlly obtained branching' fractions and
M (B) projections for the candidate events witfE within the sig-  non-resonant contributions to the reconstruction not con-

nal area limits. sidered; andB— ¢(2S)K 77 decays with the value of the

031103-4
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FIG. 2. Spectra of theK* helicity angles in (a8 B
—(29)K* T, K* T K2 ; (b) BT = g(29)K* *, K¥ ' =K * #°;
and (c) B— y(29)K*?, K*°—K* 7~ candidate events in data.
The solid curves represent the fit results to the dptants. The
dashed curves represent the background contributions.

branching fraction consisting of that for inclusiv8
—(2S)X production[18], after the subtraction oK and
K* decay contributions.

The combinatorial background is estimated with fits of the(2% per candidate =

RAPID COMMUNICATIONS
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TABLE Il. Measured branching fractiong10 #], where the
first uncertainties are statistical and the second are systematic. The
statistical and uncorrelated systematic uncertainties are added in
quadrature in calculations of the average values.

B —y(2S)K™ 7.8+0.7+0.9
BT - y(2S)K* T, K* K27 " 8.9+2.4+1.2
BY— y(2S)K* T, K* T =Kt 70 9.8+3.3x1.5

B*— y(25)K* ", average 921.9+1.2

B%— y(29)K° 5.0+1.1+0.6
BO— (29)K*0, K*OmK ™7™ 7.5+1.1+1.0
B— y(2S)K*°, K*O— K270 12.4+7.2+1.8

B%— y(29)K*°, average 761.1+1.0

—K*7% and B°—y(25)K*0, K*°—K* 7~ candidate
events in data. Th&°— y(29)K*?, K*°—K27° data are

not used in the polarization measurements because the lack
of statistics precludes a reasonable understanding of the
background. The curves show the results of the binned like-
lihood fit to the data. The fit function includes the variable
I' /T and a fixed amount of background, as listed in Table I.
The signal shapes in the fit function for decays with the
extreme values of’, /'=0 and 1 are extracted from a
Monte Carlo simulation. The detector resolution in égsis
~0.06, which is significantly smaller than the bin width. The
background shape is estimated using the events from side-
bands in theM (B) vs AE plane. The results for the fraction

of longitudinal polarization, with statistical uncertainties
only, are 0.640.22, 0.38-0.23, and 0.4& 0.14 for the de-
cays withK* " — K27 ", K* " K" 70 and K¥*—K* 7~

final states, respectively. The correctness of the fit is checked
by fitting Monte Carlo generated distributions with a known
value of the longitudinal polarization fraction. The probabili-
ties to get greater likelihood values than the observed value
are 88, 12, and 10% for the@&modes, respectively.

The acceptance and efficiency are evaluated with a simu-
lated sample oB— (2S)K*) decays. The contributions to
the systematic error come from the uncertainty in the recon-
struction efficiency due to track findind% per track, lep-
ton and kaon identificatioli3% per candidafe K finding
9 reconstruction(3% per candidate

beam-constrained® mass distributions in data. The back- background evaluatiofirable l), as well as from uncertain-

ground shape is obtained with events in th& sideband

areas: 0.05|AE|<0.15 GeV. As a check, the combinato-

rial background is also estimated using tm(4S)—>B§
Monte Carlo sample witB— (2S) X decays excluded. The

results of the two methods agree within statistical uncer-

ties in the 4/(2S) and J/¢ branching fractiond18]. The
Monte Carlo statistical uncertainty is at least a factor of 10
smaller than the statistical uncertainty of the data. Equal pro-

TABLE lll. Measured longitudinal polarization fractions, /T",

tainty. The results on signal and background yields are sumyhere the first uncertainties are statistical and the second are sys-
marized in Table I. Lepton universality is assumed in Ca|cu_tematic. The statistical and uncorrelated systematic uncertainties are

lations of the efficiencies for thg(2S)— 11~ mode.

The decay8— (2S)K* are a transition from a pseudo-
scalar to a pair of vector mesons. The fraction of longitudinal

polarization is extracted from the distribution of tk& he-
licity angle. The distribution of th&* helicity angle is given
by [19] dI'/(d cosbis)ocsint s (1—T' IT)+2 cogb«T IT.
Figure 2 shows theK* helicity angles for theB™
SP9K*T,  K*T K2, BT y(29)K* T, K*T

added in quadrature in calculations of the average values.

BT — y(29)K* T K* T K27 "
BY—y(29)K* T K** K70
B*— y(2S)K** | average
BO— y(29)K*0

0.64+0.22+0.08
0.38+0.23+0.07

0.530.16+0.05
0.40+£0.14+0.07

B— (2S)K*, average 0.450.11+0.04
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TABLE IV. Comparison of model predictions and experimental resultsRigss) andT', /T", where the
first uncertainties are statistical and the second are systematic.

Source Ry2s r./mr
Neubertet al. [7] 1.85 -
Deshpande and Trampefig] 3.8 -
Deandreeet al.[8] 2.0 -
Cheng[8] 1.57 0.33
Neubert and Stechi0] 4.35 -

CDF measuremert] 1.62+0.41+0.19 -

This measurement 1.290.22+0.05 0.45:-0.11+0.04

duction of charged and neutrBtmeson pairs ifY (4S) de-  +=0.04, and measure the ratio of vector to pseudoscalar me-
cays is assumed. In the cases of decay$2S) son production to be Ry,g=B(B— #(2S)K*)/B(B
—Jlym" o™, the additional systematic uncertainty of 2% — #(2S)K)=1.29+0.22+0.05. Table IV compares experi-
comes from the uncertainties involved in the generation ofmental results foR and I', /I" with theoretical predictions
the 7" 7~ invariant mass spectrum. For the modes with  [7,8,10. The predictions foR,,s) of Deshpande and Tram-
daughters, the efficiency depends on the helicity compositioRetic [8] and Neubert and StecfliO] are inconsistent with
of the final state due to the fact that the momenta ofkfie ~ OUr measurement. .

decay products are correlated with the helicity angle. The N sum(in)ary, we have ngd'ed all Ofour deca)§
uncertainty ink* helicity adds a small contribution of 1% to _”J’(ZS)KH with  the B°—#(2SK" and B
the systematic uncertaintyghe I' /T" result obtained in this —$(25)K* ™ modes obsgrve_d for the_ f|rs_t time. _The_ first
Rapid Communication is used for this estimatehe major measurement of the longitudinal polarization fraction is ex-

\ o .
sources of systematic uncertainty in the longitudinal polariracted from an angular analysis of tBe- ¢(2S)K* candi-

ization fraction measurement are the uncertainties in the fitdates. TheB— y(2S)K*)% decays are expected to play a
ting procedurg(10, 10, 15 %, background estimate®, 15, significant role in futureCP violation measurements.

5%), and differences in detection efficiencies for decays we gratefully acknowledge the effort of the CESR staff in
with ' /T=0 and 1(5, 5, 5% for modes withK* ™  providing us with excellent luminosity and running condi-
—Kgr*, K**—K* 7% andK*°—K* 7~ final states, re- tions. I.P.J. Shipsey thanks the NYI program of the NSF, M.

spectively. Selen thanks the PFF program of the NSF, A.H. Mahmood
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